11. Width-3 ABP, Nisan's Characterization Tuesday, September 26, 2023 11:05 PM

$$\frac{Thm}{(N:scuri 9)} Lee Oftof E Filter-Nin 3.
(1) Lee B be a hangerse ABP company. Then
the vertices at layor k of B > rank(Mk) for k-0,--, d.
(2) There exists a hangerse ABP B company of with
the vertices of layor k of B = rank(Mk) to k=0,--, d.
Pf : (1) Suppose B bos v.,-: Ur at layor k
 $\frac{1}{2} \cdot \frac{1}{\sqrt{r}} \cdot \frac{1}{\sqrt{r}} \cdot \frac{1}{\sqrt{r}} Then f = \sum_{i=1}^{r} g: h_{i}$.
Then $M_{k}^{t} = M_{k}^{filth} = \sum_{i=1}^{r} M_{k}^{th}$.
By definition, $M_{k} = (coeff g:) \cdot (coeff g.) + conh-1 massie.
(chan vector is vector
is (in -is) (config) to the column space of M_{k}^{f} .
(i) We stearbully build the k-th layer B for $k=0, y_{-r}, cl$
while vertices V_{k-1}, \cdots, V_{k-1} site
for V_{k-1} is the column space of M_{k}^{f} .
(i) We stearbully build the k-th layer of B for $k=0, y_{-r}, cl$
while vertices V_{k-1}, \cdots, V_{k-1} site
for M_{k} is the column space of M_{k}^{f} .
Functions of M_{k}^{f} are vectored as day-k polynamials
where trip to build of M_{k}^{f} are vectored as day-k polynamials
where the construct $C(u_{k-1}, u_{k}) \to \frac{1}{2}$ for M_{k}^{f} .
Funct M_{k}^{f} is M_{k}^{f} as $1 \le M_{k}$ is a laws of the column space of M_{k}^{f} .
Now suppose layer holds with workers $5 m_{k-1} = 1$.
Here $f_{1,-r}, f_{r} \in F(Y_{1}, -X_{r})$ form a basis of the column space of M_{k}^{f} .$$$

Let
$$f_{1,1} = f_{1,2} \in F(X_{1,1}, X_{2})$$
 form a basis of the chain space of M_{1}^{+}
Add $V_{p,1}, \cdots, V_{k,T_{k}}$ to the k-th layor.
We need to add wires between $(k-1)$ the and k-th layer such that
 $V_{n,1}$ can puter $f_{1,1}$. Then (K) would hold.
For this, we jux need to prove out $f_{1} \in Space \left\{ f_{k+1,j} \in X_{2}, f_{2} \in F_{1,k}, K_{2}^{+}$ ex.
 $W_{1} \in E = \sum_{i=1}^{n} (f_{k}, \dots, f_{k}) : X_{i} \cdots X_{i} d$ where $C_{1} = \dots = M_{k}$
 $(f_{k}, \dots, f_{k}) : K_{i} = K_{k} = K_{k}$