Today: Thu [Ben-Or, cleve'88]: Algebraic formulas and woth-3 AMPs are equialat up to poly-size. (or width $c, c \geqslant 3$ is a constant).

Bf: Suppose F is a poly (n)-she formula in X_{1}, \cdots, X_{n}. We turn it into a poly (n) the width -3 ABP.
$B y$ depth reduction, we may assume the depth of F is $O(\log n)$.
Reaushady transform F int. a praluet of 3×3 matrices , that equals $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ F & 0\end{array}\right)$
If F is a leaf $\Rightarrow M=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
If $F=F_{1}+F_{2} \Rightarrow M=M_{A}+M_{2}, B$ where $M_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 \\ F_{1} & 0 & 1\end{array}\right), M_{2}=\left(\begin{array}{ccc}1 & 0 \\ 0 & 1 \\ F_{2} & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \left.=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-r_{2} & 1 \\
0 & k_{1} & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
t_{2} & 1 & 0 \\
0 & -t_{1}
\end{array}\right) \quad \begin{array}{c}
1, B, C, D \\
1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
k_{1} F_{2} & 0 & 1
\end{array}\right) \\
& \text { tran } M_{1} \text { or } M_{2} \\
& \text { va elenatary row } \\
& \text { and column operatoins. }
\end{aligned}
$$

The final $A B D$ is $(0,0,1) M\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) . \quad$ sine $=\operatorname{poly}(n)$.
Cowerely, suppose B is an $A B D$ of sine poly (n). only 6 curies in total.

$$
B=u \cdot M_{1} \cdots, M_{l} \cdot v \text {. Each entry of } u M_{1} \cdots M_{e_{2}} \text { and } M_{e_{2}+1} M_{l} \cdot v
$$

is computed by an ABP with l replaced by $\ell / 2$.
Tranfom B into a formula recurnkely, she $S(l)=65(l / 2)+O(1)$
(when $l=0$; just capper $B=u \cdot v$ as a formate.)

$$
\Rightarrow S(e)=O\left(e^{\log _{2}, 6}\right) \leq p_{0} \operatorname{ly}(n) .
$$

The prot also shows that $\left(\operatorname{IMM}_{3, n}\right)$ is VF-complete,

The proof also shows that $L^{\perp \cdot n v 3, n}$) is vr-compwew,
with ${ }^{2}$ lay th
Related work:
Orbiter linear form.
Thu (Allender-Wang'll) For $k \geq 8, \sum_{i=1}^{k} x_{2 i-1} \cdot x_{2}+l\left(x_{1}, x_{n}\right)$ is not computable by weld- $2 A B D_{s}$ of any length.
suppress char $\left(i I_{1}\right) \neq 2$,
Thy (Bragmaun - Ikenmeyer-Zuiddam'17) Ywidth-2 ABMs of poly (n) size can approximately compute any $f \in V F$, in the sense that
there easts a uldth $-2 A B P$ of poly (n) stele over $F(\varepsilon)$

Nisan's characterization of (non-commutatue) ABP complexity.
The non commutative poly nounal ring $\mathscr{F}\left\{X_{1}, \cdots, X_{n}\right\}$ is the free algebra generated by x_{1}, \cdots, X_{n} over \mathbb{F}. (I_{n} contrast, $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is the free commutate algebra genemead by x_{1}, \cdots, x_{n} over \mathbb{F}, ie. we have the relations $x_{2} x_{j}=x_{j} x_{2}$)
$A_{n} A B D$ in the non-comnnutitue setting computes some $f \in \mathbb{F}\left\{x_{1}, \cdots, x_{n}\right\}$.
Let $f \in \mathbb{F}\left\{x_{1}, \cdots, X_{n}\right\}$ be honogeneas of degree d.
Conilder the computation of f in the homogeneous model:
Layers $0112 \cdots d-d$

it weights are honogereases liner forms in X_{1}, \cdots, X_{n}.
For $0 \leq k \leq d$, let M_{k}^{f} be a $n^{k} \times n^{d-k}$ matrix whore vows are indeed by
$\left(i_{1}, \cdots, i_{k}\right) \in\{1, \cdots n\}^{k}$, and columbus are indexed by $\left(j, \cdots, j_{d-k}\right)\left(-[1, \cdots n\}^{d-k}\right.$, and $\left.M_{h}^{f}\left(i_{1}, \cdots, i_{n}\right),\left(j_{1}, \cdots, j_{d-L}\right)\right)=$ Coeffictat of $X_{1} \ldots X_{i k} \cdot X_{j,}, X_{j_{d-k}}$ in f.

Thu ($N_{\text {san' }} 91$) Let $0 \neq \delta \in \mathbb{E}\left\{x_{1}, \cdots, X_{n}\right\}$.
(1) Let B be a hanggeneas $A B D$ compatight. Then \# vertices at layer k of $B \geqslant \operatorname{rank}\left(1 M_{k}^{+}\right)$for $k=0, \cdots, d$.
(2) There exists a honogeneass ABP B computing of with
\# vertices at layer k of $B=\operatorname{rank}\left(M_{k}^{f}\right)$ for $k=0, \cdots, d$.
Pf: (1) Suppose B has $v_{1}, \cdots ; v_{r}$ at layer k

$$
\xrightarrow[g_{r}]{g_{v}} \cdot \xrightarrow[v_{r}]{\rightarrow} \cdot h_{r} \cdot t \quad \text { Then } f=\sum_{i=1}^{r} g_{i} \cdot h_{i}
$$

Then $M_{k}^{+}=M_{k}^{\sum_{i=1}^{r} g_{i} h_{i}}=\sum_{i=1}^{r} M_{k}^{a_{i} h_{i}}$.

$$
i=\left\{i, \cdots, i_{k}\right) \in\{2, \cdots n\}^{k} \quad j=\left(j, \cdots, j_{n-k}\right) \in\{1,-, n\}^{n-k} \text {. }
$$

So $\operatorname{rach}\left(M_{h}^{\dagger}\right) \leq r$.
(2) We iteratively build the k-t hlager of B for $k=0,1, \ldots, d$ wi th vertices $V_{k, 1}, \cdots, v_{k, r_{k}}$ s.t.
$f_{v_{k}, 1}, \cdots, t_{v_{k}, r_{k}}$ form a basis of the column space of M_{k}^{f} (*) where $f_{v_{k, i}}$ denotes the polynomial computed at $v_{k i,}$,
and the columns of $M t_{k}$ are viewed as dey $-k$ polynomials $v-a$ the correspondence $\left(C_{\left(i_{1}, \cdots, i_{k}\right)}\right) \mapsto \sum_{\left(i_{1}, i_{i}\right)} C_{\left(i_{1}, \cdots i_{k}\right)} X_{i 1}, X_{i 2} \cdots X_{i k}$.
Base case: $k=0, v_{k, 1}=s, \quad f_{v_{k, 1}}=1 \quad f_{1} \neq 0$.
M_{k}^{+}is a $1 \times n^{d}$ matrix. So $f_{v_{k, 1}}$ is a basis of the column
Now suppose layer $k-1$ is built with vertices $v_{k-1}, \cdots, v_{k-1, r_{k-1}}$,
Let $f_{1}, \cdots, t_{r} \in \mathbb{F}\left\{x_{1}, \cdots, x_{n}\right\}$ form a basis of the column space of M_{k}^{+}

Let $f_{1}, \cdots, f_{r_{k}} \in \mathbb{F}\left\{r_{1}, \cdots, x_{k}\right\}$ form a basis of the column space of M_{k}^{+} Add $v_{k, 1}, \cdots v_{k, r_{k}}$ to the k-t hlayer.
we need to add wires between $(k-1)$ th and k-th lager such that $V_{k, i}$ computes f_{i}. Then $(*)$ would hold.
For this, we just need to prove each $f_{i} \in$ span $\left\{f_{v_{k-1}, j} \cdot x_{j^{\prime}}\right\}_{k_{j} \leq r_{k-1}, j^{\prime} \leq n}$.
Write $f=\sum_{(1, \ldots)} \quad{ }^{c}\left(i_{k}, \ldots, i d\right), ~ x_{i_{k}} \ldots x_{i_{d}}$ where $c_{\left(i_{k}, \cdots, i d\right)}$
$\left(i_{k}, \cdots j_{d}\right)_{\{l, \ldots, n\}}{ }^{d-k+1}$ is a deg $(k-1)$ rigmalal in $\mathbb{F}\left\{x_{1}, \cdots x_{n}\right\}$.
Then both $\left\{f_{v_{k-1}, 1}, \ldots, f_{v_{k-1}, r_{k-1}}\right\}$ and $\left\{C_{c_{k}, \ldots, i \infty}\right\}$ span the column space of M_{k-1}^{f}.
($i_{k}, \cdots i(\operatorname{la})$
Moreover, both $\left\{f_{1}, \cdots, f_{r_{k}}\right\}$ and $\left\{c_{(i k, \cdots, i d)} x_{i_{k}}\right\}_{\left(i_{k}, \ldots, i d\right)}$ span the column space of M_{k}^{+}.
So it suffices to show each $G_{i k, \ldots, i d)} \cdot X_{i k}$ is in span $\left\{q_{i_{k}, \cdots, i d} X_{j^{\prime}}\right\}$ which is obvoouly true by letting $j^{\prime}=i_{k}$.

Lemma: Let $f=D E R Z M_{n}=\sum_{\sigma E S n} \prod_{i=1}^{n} X_{i=\sigma(2)}$ or $f=D E T_{n}=\sum_{\sigma F S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} X_{\text {vote }}$.
Then $\operatorname{rank}\left(M_{k}^{\dagger}\right)=\binom{k}{k}$ for $k=0, \ldots, n$.
pt: For $i 1, \cdots i_{k} \in\{1, \cdots, n\}$ ad $j_{1}, \cdots, j_{n-k} \in\{1, \cdots, n\}$.
The $((1, i, 1), \cdots,(k, i n)),\left((1, j), \cdots,\left(n-k, j_{n-k}\right)\right)$-the entry of PFRK M_{n}
is 1 it $\{i, \cdots, i n\}$ and $\left\{j_{1}, \cdots j_{n-k}\right\}$ form a partition of $\{1, \cdots, n\}$, and 0 otherwise.
The other entries of $P E R M_{n}$ are zero.
So) we may choose $\binom{n}{k} k$-sets as rows and $\binom{n}{n-k}=\binom{n}{k}\left(\begin{array}{c}k-k) \text {-sets } \\ \text { as columes }\end{array}\right.$ as column after removing duplicate rows (columns,
. In... Id attu siubmatrix and this is the largest voningular subumatiox.
after re mo veg auppuance rows (cousins,
to form an identity submatrix, and this is the largest wonsingular submatiox. \Rightarrow rank $=\binom{n}{k}$.
For DET n it's the same except that the daplacite rows (colvmusmany be multiplied by -1 due to $\operatorname{sgn}(\sigma)$.
Cor: In the a hove $A B P$ model, sire of $A B P_{s}$ capputing $P E R M_{n}$ orD ET $T_{n} \geqslant \exp (n)$,
A related model: read-once oblivious branching programs (ROABPs) $\log _{a} 01 \cdots \vec{B}^{\prime} \cdot \cdots$
 velghts of edges from $(k-1)$ th to k th lager are univariate polynomials $f_{e} \in \mathbb{F}\left[X_{k}\right]$ with $\operatorname{deg}\left(f_{e}\right) \leq d . \quad d \in \mathbb{N}$.
Polynomials are in the commintatue polynomial ring $\mathbb{F}\left[x_{1}, \cdots x_{n}\right]$. In fact, it does not matter Since X_{i} always gets multiplied before X_{j} if $i<j$.
Nisan's characterization also holds in this model, with x_{1}, \cdots, x_{n} at the k th position replaced by $X_{k}^{0}, X_{k}^{1}, \cdots, X_{k}^{d}$. The proof is the same and ceft as an exercise.

